Neural Networks to Guide the Selection of Heuristics within Constraint Satisfaction Problems
نویسندگان
چکیده
Hyper-heuristics are methodologies used to choose from a set of heuristics and decide which one to apply given some properties of the current instance. When solving a Constraint Satisfaction Problem, the order in which the variables are selected to be instantiated has implications in the complexity of the search. We propose a neural network hyper-heuristic approach for variable ordering within Constraint Satisfaction Problems. The first step in our approach requires to generate a pattern that maps any given instance, expressed in terms of constraint density and tightness, to one adequate heuristic. That pattern is later used to train various neural networks which represent hyper-heuristics. The results suggest that neural networks generated through this methodology represent a feasible alternative to code hyper-heuristic which exploit the strengths of the heuristics to minimise the cost of finding a solution.
منابع مشابه
Search on Constraint Satisfaction Problems with Sparse Secondary Structure
This paper considers a variety of ways to detect relatively isolated, highly restricted subproblems and then exploit them to guide search for a solution. It introduces a local search method that, prior to search, estimates where such subproblems lie within constraint satisfaction problems. These subproblems are assembled into a secondary structure used with dynamic variable-ordering heuristics ...
متن کاملConstraint satisfaction adaptive neural network and heuristics combined approaches for generalized job-shop scheduling
This paper presents a constraint satisfaction adaptive neural network, together with several heuristics, to solve the generalized job-shop scheduling problem, one of NP-complete constraint satisfaction problems. The proposed neural network can be easily constructed and can adaptively adjust its weights of connections and biases of units based on the sequence and resource constraints of the job-...
متن کاملA Review of Epidemic Forecasting Using Artificial Neural Networks
Background and aims: Since accurate forecasts help inform decisions for preventive health-careintervention and epidemic control, this goal can only be achieved by making use of appropriatetechniques and methodologies. As much as forecast precision is important, methods and modelselection procedures are critical to forecast precision. This study aimed at providing an overview o...
متن کاملImproving Genet and Egenet by New Variable Ordering Strategies
Constraint satisfaction problems (CSPs) naturally occur in a number of important industrial applications such as planning and scheduling defeating many algorithmic search methods. GENET and it extended model, EGENET, are probabilistic neural networks which had some remarkable success in solving some hard instances of CSPs such as a set of hard graph coloring problems. Both GENET or EGENET does ...
متن کاملA Constraint-Based Method for Project Scheduling with Time Windows
This paper presents a heuristic algorithm for solving RCPSP/max, the resource constrained project scheduling problem with generalized precedence relations. The algorithm relies, at its core, on a constraint satisfaction problem solving (CSP) search procedure, which generates a consistent set of activity start times by incrementally removing resource conflicts from an otherwise temporally feasib...
متن کامل